You are here

Server-side Adaptive Federated Learning over Wireless Mesh Network

TitleServer-side Adaptive Federated Learning over Wireless Mesh Network
Publication TypeConference Paper
Year of Publication2023
AuthorsFreitag, F, Wei, L, Liu, C-H, Selimi, M, Veiga, L
Conference NameInformation Technology and Systems (ICITS 2023)
Date Published08/2023
PublisherSpringer International Publishing
Conference LocationCusco, Peru
ISBN Number978-3-031-33261-6
AbstractIn federated learning, distributed nodes train a local machine learning model and exchange it through a central aggregator. In real environments, these training nodes are heterogeneous in computing capacity and bandwidth, thus their specific characteristics influence the performance of the federated learning process. We propose for such situations the design of a federated learning server that is able to adapt dynamically to the heterogeneity of the training nodes. In experiments with real devices deployed in a wireless mesh network, we observed that the designed adaptive federated learning server successfully exploited the idle times of the fast nodes by assigning them larger training workloads, which led to a higher global model performance without increasing the training time.