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Abstract. Nowadays, the Grid is the focus of multiple researches. Our work is 

centered on Resource Management for Grids as it is an opened and current 

research area. Decentralized, scalable and efficient resource search algorithms 

are one of the key issues for resource management in large Grid systems. 

Resource search is required in order to allocate applications and data efficiently 

and to maintain the quality of service at runtime, just to mention some 

examples.  In this work, we propose a scheme that presents essential 

characteristics for self-configuring search and is able to handle dynamic 

resources, such as memory capacity. Our approach consists on a hypercube 

topology connecting the nodes and a scalable and self-configuring search 

procedure. The algorithm improves the probability of reaching the alive nodes 

in the Grid even in the presence of non-alive ones (inaccessible, crashed or 

heavy loaded nodes). In this paper, after the theory’s description, we present 

some results obtained by running our search protocol on the GridSim simulator. 

We have evaluated 6 different metrics performing several resources searches 

and we show the arithmetic media for each measure. 
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1 Introduction 

The Grid includes a large number of dynamic and heterogeneous resources that are 

geographically distributed. Its main objective is to use the available resources 

provided by administrative domains, also named Virtual Organizations (VO) [1]. Grid 

Resource Management in general and Resource Search in particular is an opened 

research topic. This challenge plays a fundamental role, for example, allowing the 

system to allocate grid-enabled applications and data efficiently and to maintain the 

quality of service of the applications at runtime. In most of the current grids Resource 

Management solutions are based on centralized or hierarchical structures that are not 



appropriate for large systems because they are not scalable enough. By the other hand, 

several scalable and decentralized Peer-to-Peer (P2P) resource searching algorithms 

have been proposed for Grid systems. Nevertheless, P2P searching techniques were 

designed for non-dynamic content as files, and the Grid requires addressing dynamic 

resource data such as available memory, processor load, etc., for which, the P2P 

search is not suitable. Besides, as pointed out by Ian Foster and al. [2], “it is necessary 

to address failure, using scalable self-configuring protocols so to have a worldwide 

computer within which access to resources can be negotiated as and when needed”.  

Motivated by this open research area, we present a scalable and decentralized 

architecture that allows the search of distributed resources preserving the VO’s 

autonomy. The architecture is based on an overlay network with hypercube topology 

that interconnects nodes and each node represents a VO. We also present a self-

configuring resource search algorithm that is able to adapt himself to environments 

where some nodes might be non-alive (crashed, inaccessible, high-loaded,…) when a 

resource is queried. Finally, we present some results obtained by running our search 

protocol on the GridSim simulator. We have evaluated 6 different metrics performing 

several resources searches and we show the arithmetic media for each measure. 

One of the challenges of Grid Resource Searching is to be resilient in the presence 

of node failures. This resilience has different aspects: static resilience and routing 

recovery. As the present work is focused on the resource discovery algorithm this 

paper only addresses static resilience [3], that is, how well our approach can locate 

required resources before routing tables are updated by the routing recovery algorithm 

in order to remove non-alive nodes from the overlay. The other issue, routing 

recovery, deals with the fact that when failures occur, the routing tables are depleted 

in the remaining nodes. Routing recovery is not addressed in this paper, as this issue 

is related to the building and maintaining of the overlay topology.  

The rest of the paper is organized as follows: In Section 2 we present an overview 

of our network architecture. Section 3 describes our resource search procedure. An 

overview of related work is presented in Section 4. In Section 5, the performance of 

the algorithm is shown. Conclusions and our future work can be found in Section 6. 

2 The Hypercube Overlay Architecture 

In actual Grid environments, the administrative domain (VOs), do not join or leave 

the Grid continually but occasionally. Most of the current VOs that form a Grid have 

powerful servers within their high performance local area networks and maybe they 

are interconnected by very high speed core networks. The servers seldom fail and 

they join and leave the system infrequently. Therefore the Grid Resource System can 

be organized in a stable and regular topology with low-diameter configurations, 

efficient searching and routing algorithms that address node failures. Each VO 

belonging to our environment, named HGrid, provides available resources and makes 

them accessible through software entities named Grid Information System (GIS) [4]. 

In HGrid, the interconnections between nodes have the topology of a hypercube. 

An n-dimensional hypercube (Hn) has N = 2
n
 nodes, where each node represents a 

GIS and they have an identifier from 0 to 2
n
-1. Two nodes are neighbors in the m-th 



dimension if the binary representations of their identifiers differ exactly by the m-th 

bit. Then, in a complete hypercube Hn, each node has exactly n neighbors. Fig. 1 

illustrates the architecture for 2, 4 and 8 nodes respectively. An overlay network with 

a hypercube topology connecting each GIS in a grid environment allows each VO to 

contribute their resources while assuring their autonomous management. The 

resources offered by a VO can join or leave the system at any time updating its own 

GIS. Every GIS keeps a small routing table of only n entries (n = log2N) 

corresponding to their n neighbors. Also, each GIS has the responsibility to verify 

which of its neighbors are still alive. The term alive is applied to a neighbor node that 

can be reached across the network. Then, a node that has crashed, is inaccessible or is 

heavily loaded by traffic is considered a non-alive node.  

3 Resource Search Using HGRID 

We present a scalable self-configuring resource search algorithm that is able to adapt 

him automatically to dynamic environments. Inside HGrid, the approach named 

Algorithm-H, is performed to search a resource/s requested by a client. It is a self-

configuring protocol by adapting itself when some nodes are in a non-alive state 

(inaccessible, crashed or heavy loaded nodes).  As we said before, we do not address 

the building and maintaining of the hypercube topology when a node joins or leaves 

the overlay. Changes in the overlay network make the routing tables be re-mapped 

and this does result in some overhead. However, some of the results published 

regarding the scalability of hypercube overlays used in other environments seem to 

address this challenge and offer an adequate solution [5].  

We assume that in Grid environments the VOs  joins or leaves the Grid 

occasionally, so the overhead of building and maintaining the hypercube overlay is 

smaller than in an extremely transient environment - where a significant fraction of 

the nodes are joining or leaving at any time. Since an incomplete hypercube could be 

re-built as a complete hypercube where the void spaces are completed by replicating 

some of the GIS, we have considered the number (N) of GIS is always a power of 2, 

so all the nodes have n-neighbors - where n is the dimensionality of the hypercube. 

Finally, in our proposal it is possible to initiate a search request from any of the GIS 

nodes alive and to propagate the request to the rest of nodes. But for generality 

reasons, all the examples used from now on assume that GIS 0 is the start node. 
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Fig. 1. H1) The architecture for the interaction among 2 nodes, a one-dimensional hypercube,  

H2) 4 nodes, a two-dimensional hypercube and H3) 8 nodes,  three-dimensional hypercube. 



3.1   The Search Procedure in a H4 

The search starts when a client connects to a GIS node and it requests a resource/s. If 

the start node does not have the resource/s requested, then it starts a search. Next, we 

show the search in a 4-dimensional hypercube: 

1) The start node 0, in decimal notation, of a 4-dimensional hypercube is connected 

across its 4 neighbor nodes to 4 different hypercubes. These 4 hypercubes are a 

hypercube of 2
0
 nodes in dimension 0, one of 2

1
 nodes in dimension 1, one of 2

2
 

nodes in dimension 2 and finally, one of 2
3
 nodes in dimension 3. In Fig. 2.a) we 

have marked these hypercubes with 0, 1, 2 and 3, respectively. Notice that these 4 

hypercubes contain all the nodes of the overlay except the initial node. 

2) When the start node does not have the requested resource/s, it starts a search by 

sending the query to each of its neighbors. It is the 1
st
 step of 4. In this step, the 

nodes reached are marked by the sub-index 1 in Fig. 2.a) as 01, 11, 21 and 31. 

3) Each reached node receives a first vector along with the request. This vector 

indicates the dimensions through which the request will be send in case of it 

cannot be satisfied by the reached node.  

4) Each reached node applies the same procedure described in previous steps - 1), 2) 

and 3) - for its neighbours formed by the received dimensions. We show in Fig. 

2.b) the 3-dimensional hypercube marked with 3 in Fig. 2.a). Each GIS node has 

an identifier in H4, the decomposed hypercube dimension of which it forms a part, 

the vector received and the search algorithm step when it is requested. In Fig. 2.b), 

the node 1010 forms a part of a 1-dimensional decomposed hypercube, the node 

receives the vector 0 and it is reached in the step 2 of the search procedure. 

5) Before sending the query, each reached node can reorganize its hypercube of 

several forms. We show in Fig. 2.c) a possible reorganization of the case 

illustrated in Fig. 2.b) for the 3-dimensional hypercube marked with 3 in Fig. 2.a). 

In Fig. 2.c), the node 1010 forms a part of a 0-dimensional decomposed 

hypercube, the node receives an empty vector (marked by (-)) and it is reached in 

the step 2 of the search algorithm. When a node receives an empty vector, it does 

not propagate this vector anymore. Notice that the nodes covered in 2c) are the 

same nodes those reached in 2.b), nevertheless, the node 1010 propagates the 
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)

(1
)

(1
,0
)

Fig. 2. The Search Procedure in a H4 hypercube. a) Decomposing a hypercube H4 into four 

hypercubes. b) Searching in the 3-dimensional hypercube marked with 3 in a). Each reached 

node applies the same procedure based on the received vector. c) A possible reorganization of 

the case showed in b). Before sending the query, every reached node can reorganize its 

hypercube of several forms. 



query to nobody in Fig. 2.c) and propagates to one neighbour (the node 1011) in 

Fig. 2.b). 

6) What does happen if node 1011 has the required resource(s) and node 1010 is a 

non-alive node? In this case, if node 1000 knows that node 1010 is not alive 

(maybe it is crashed), it reorganizes its hypercube as in Fig. 2.c) and the node 

1011 is not reached across the non-alive node by trying to be queried to another. 

7) The search procedure reorders the vector received with the resource query in order 

to send the query at maximum number of nodes that was possible. 

8) Each reached node receives a second vector, too. The search procedure tries to 

requested GIS nodes through nodes in an alive state, by avoiding the non-alive 

ones. This second vector is not illustrates in Fig. 2, but it is shown in Fig. 3. 

Propagating the requests in this way, the effect of non-alive nodes is reduced. Making 

the arrangement in the vector received, non-alive nodes would propagate the request 

to fewer neighbors than alive ones. Consequently, the algorithm tries to isolate the 

nodes that are in a non-alive state so that they become leaf nodes - if it is possible. For 

the start node and for each node that receives a non-empty vector, if only one 

neighbor node of those to which the search must be propagated is in a non-alive state, 

the total number of nodes reached at the algorithm last step is not affected. Related to 

the alive nodes unreachable due to the fact its non-alive parent’s node, Algorithm-H 

tries to reach them using the va list. In Fig.3, the flow diagram is illustrated. 

3.2 A Complete Example Using Algorithm-H  

Fig. 4 illustrates a complete example. We transform the hypercube representation to 

that of a tree-like structure in order to illustrate better our search procedure (notice, 

some child nodes could appear more than once during subsequent time steps). 

 

 Fig. 3: Flow Diagram of the Algorithm-H. 



A request for service P starts at node 0000 in a four-dimensional hypercube. We 

assume that none of the nodes has the service requested (note that this is the worst 

case). In the example, the value of the list vd at the start node is {0, 1, 2, 3} and the 

ordering after calling the statusNeighbors() function is {3, 0, 1, 2}. In this case 0, 1 

and 2 are located at the last three positions of vd = {3, 0, 1, 2} because we assume 

that neighbors in dimensions 0 (0001), 1 (0010), 2 (0100) and  are non-alive nodes. 

The neighbor in dimension 3 (1000) is the last alive node - the only one in this case. 

In the first step, the start node’s neighbor in dimension 3 (1000) receives the 

service request P, the list vd = {0, 1, 2} and va = {3} since it is the last alive neighbor.  

The algorithm tries to reach nodes 0010, 0101 and 0110 (whose parent nodes are non-

alive) by sending the list va = {3} to node 0010 to be used in the third stage. 

In the second step, looking at node 1001, the message composed of the resource 

request P along with the lists vd = {1, 2} and va = {3} is received. If the node is unable 

to satisfy the request - processRequest() returns false -, vd is not sorted  because its 

neighbor in dimension 1 (1011) and its neighbor in dimension 2 (1101) are alive 

nodes. Although va = {0} is received by the node 1001, it does not propagate the 

message to its neighbor in dimension 0 (1000) because it is its parent node. 

In the third phase, looking at node 1011, the message composed of the resource 

request P along with the lists vd = {2} and va = {3,0} is received. If processRequest() 

returns false, its neighbor in dimension 2 (1111) receives P, vd = {} and va = {3,0} and 

nodes (0111) and (1110) receive P, vd = {} and va = {}, due to the list va = {3,0}.  

In the fourth stage, the resource request P is received from node 1011 (0011 is the 

neighbor in dimension va [0] = 3) to the node 0011. Notice that 0011 was not reached 

in the 2
nd
 step due to the non-alive node 0001 but it is reached now. 

In five steps almost all of the alive nodes inside the four-dimensional hypercube 

are visited (except node 0110) even when three neighbors of the start node (0001, 

0010 and 0100) and two more nodes (1010 and 1100) are presumed to be non-alive. 

Fig. 4. Algorithm-H: A request of a resource/s P started at node 0000 in a 4-dimensional 

hypercube (A complete example).  



4 Related Work 

The Globus Toolkit's Monitoring and Discovery System (MDS) defines and 

implements mechanisms for resource discovery and monitoring in Grid environments 

[6]. Motivated by these issues, recently there have been several studies using the P2P 

model to build a decentralized architecture of VOs. Most of them adopt Distributed 

Hash Tables (DHTs) and a few of them introduce unstructured P2P topologies. All 

these studies indicate that some P2P models could help to overcome the challenges 

posed by the dynamic environment in Grids.  Adriana Iamnitchi and Ian Foster [7] 

suggest a decentralized architecture similar to the Gnutella P2P system. This approach 

is not able to guarantee that some required information that exists in the system can be 

found even when the system has no failures. Moreover, a peer could be often reached 

several times by the same query. Our approach assures that nodes are reached only 

once. In the absence of failures all nodes in the system are reached and if some 

failures occur the most nodes are reached.  

DHT based systems handle unexpected node failure through redundancy in the 

network and some of them also do node asynchronous lookups periodically to 

compensate for disappeared nodes – for example, Kadmelia [8]. To enable efficient 

searches a DHT needs to have the data-item distributed. Our approach does not 

require distributing the data-items but each request sends from 0 to N-1 messages. 

Keeping the state of highly dynamic data-items updated - such as available 

memory or CPU processing - requires sending a large amount of messages in DHTs 

approaches– as in SWORD [9]. In DHTs, the data-item that belong to a VO, are 

geographically distributed and, an updating operation reaches O(log N) of distributed 

peers before inserting the data item (where N is the total number of peers). Our 

approach takes advantage of the high quality network available inside a VO (probably 

a LAN): updates are more efficient inside a VO than among distributed VOs. 

Furthermore, HGrid is more efficient in the insert phase as it is performed locally.  

A node in the traditional DHT has no control over the distribution of its data items, 

and the number of data items belonging to others that it has to store. DGRID [10], a 

model for supporting GIS over the DHT Chord, maintains the resource information in 

the originating VO by increasing the total number of DHT nodes. Unlike traditional 

DHTs, DGRID is by design resilient to node failures without the need to replicate 

data items. The meaning of resilient to node failures is defined as the ability to locate 

existing resources whose originating VO is still alive. The approach presented in this 

paper has the same resiliency to node failures as in DGRID and also guarantees that 

any data item can be located in O(log N) overlay hops.  

In HGrid, changes in the overlay network when a grid node joins or leaves the 

system do not cause resource information (data-items) to be remapped, whereas in 

traditional DHTs, it causes both routing tables and data-items to be remapped. 

Recently, an unstructured topology based on hypercube has been proposed for use 

on Data Grids [11]. The nodes in this work contain pointers to shared data. Data Grids 

need to improve locality among distributed data - which are stored as pointers in the 

overlay nodes. In order to improve the locality of data, the paper imposes a hypercube  
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Fig. 5. HGrid and Algorithm-H: For each parameter, once set the (PGIS, PREC) values, we 

performed 20 resources searches and we obtained the arithmetic media.   

 

 

 

 

 

 

 
Fig. 6. The Computers used on our experiments with HGrid and Algorithm-H’s searches. 

 

GIS’s topology - named DGIS. After this, it proposes a transposition algorithm in 

order to optimize the overlay network’s topology according to the access statistics 

between peers - that is, to improve the data locality. However, the algorithm showed 

does not address non-alive nodes and failures.  

Finally, we have evaluated HGrid and Algorithm-H in previous works. For 

example, in [12], we show the percentage of average of failed paths across different 

search algorithms (HaoRen et al.’s algorithm - a non fault-tolerant algorithm 

described in [11] - and Algorithm-P - our previous Algorithm-H fault-tolerant 

protocol described in [13]. 

Characteristics  Computer-1  Computer-2 

CPU P4 2.6GHz C2D 1.6GHz 

RAM Memory 1.5 Gb 2 Gb 

Hard Disk 1 x 120GB + 1 x 160GB 1 x 160GB 



5 Performance Evaluation 

In Fig.5, we tested the static resilience of Algorithm-H inside 1 to 10-dimensional 

HGrid overlays. The experiments run in 2 computers described in Fig.6. All HGrid’s 

GIS had a PGIS probability - probability of failure - and a probability PREC - probability 

to have the resource/s requested when the queried arrives to a GIS. PGIS can be seen as 

the percentage of non-alive nodes  that can be in and PREC as the percentage of 

resources requested presents in the HGrid hypercube when a search is performed. The 

BRITE [14] and the GridSim [15] was used to create automatically the IP Internet 

topology and the HGrid, respectively. Given a (PGIS, PREC) we started 20 requests for 

service P at and we calculated the arithmetic media for each measure.  

We have evaluated the following metrics for each resource/s search in HGrid using 

Algorithm-H: a) the total number of messages sent in the hypercube overlay, b) 

number of branches opened where a branch is each of the searching ways in which it 

is divided the requested message initiated by the client, c) for each opened branch, the 

number of application hops, d) for each branch established, the network hops 

performed through routers in the overlay,  e) by simulation, the search estimated time, 

where the time was set as the difference between the time when the request resource 

arrives at the last GIS and the moment in which the user initiates his search and the 

number of the resources found during the search in HGrid. In Fig.5 we show the inter-

relation between the metrics b) - e) and the total messages application sent - a). 

To summarize, our results confirm that the static resiliency of the algorithm shown 

is very efficient for current non-extremely transient Grid environments. It offers high 

lookup guarantees and it seems to be scalable with the number of nodes. 

6 Conclusions and Future Work 

The present approach allows the search of geographically distributed resources 

while preserving the autonomy of each individual VO. Unlike traditional approaches 

based on DHTs our scheme is suitable for efficiently handling dynamic attributes 

such as memory capacity without generating overhead across distributed nodes. 

HGrid using  Algorithm-H is able to adapt him automatically to environments where 

nodes could be heavily loaded or even crashed, without requiring any node to have 

the global state information. We refer to this property as self-configuring. In the 

absence of non-alive, if some node present in the overlay is able to satisfy the request 

this node will be found in few steps (less than the hypercube dimension). Therefore 

the proposed scheme offers lookup guarantees in the absence of faulty nodes. If non-

alive nodes are present, the algorithm also offers lookup guarantees in some cases.  

To conclude, there are interesting areas that have opened up as a result of this work 

as comparing several metrics between the present approach and some actual DHT-

approaches, to evaluate if the router layer affects to the overall resource searches, new 

search algorithms - design and simulation -, the incorporation of topology 

maintenance protocols and performing studies related to other topologies such as ring 

or mesh. Finally,  deploy the algorithms into a real GRID is a good form to end this 

work, basically, a desirable final step.  
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